Abstract

Histopathology, the standard method to assess BM in hematologic malignancies such as myeloproliferative neoplasms (MPNs), suffers from notable limitations in both research and clinical settings. BM biopsies in patients fail to detect disease heterogeneity, may yield a nondiagnostic sample, and cannot be repeated frequently in clinical oncology. Endpoint histopathology precludes monitoring disease progression and response to therapy in the same mouse over time, missing likely variations among mice. To overcome these shortcomings, we used MRI to measure changes in cellularity, macromolecular constituents, and fat versus hematopoietic cells in BM using diffusion-weighted imaging (DWI), magnetization transfer, and chemical shift-encoded fat imaging. Combining metrics from these imaging parameters revealed dynamic alterations in BM following myeloablative radiation and transplantation. In a mouse MPLW515L BM transplant model of MPN, MRI detected effects of a JAK2 inhibitor, ruxolitinib, within 5 days of initiating treatment and identified differing kinetics of treatment responses in subregions of the tibia. Histopathology validated the MRI results for BM composition and heterogeneity. Anatomic MRI scans also showed reductions in spleen volume during treatment. These findings establish an innovative, clinically translatable MRI approach to quantify spatial and temporal changes in BM in MPN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.