Abstract
To develop a multiparametric MRI-based radiomics nomogram for predicting lymphovascular invasion (LVI) status and clinical outcomes in patients with breast invasive ductal carcinoma (IDC). A total of 160 patients with pathologically confirmed breast IDC (training cohort: n = 112; validation cohort: n = 48) who underwent preoperative breast MRI were included. Imaging features were extracted from T2-weighted imaging (T2WI), apparent diffusion coefficient (ADC) maps, and contrast-enhanced T1-weighted imaging (cT1WI) sequences. A four-step procedure was applied for feature selection and radiomics signature building. Univariate and multivariate logistic regression analyses were conducted to identify the features associated with LVI, which were then incorporated into the radiomics nomogram. The performance of the nomogram was evaluated by its discrimination, calibration, and clinical usefulness. Kaplan-Meier survival curves based on the two radiomics models were used to estimate disease-free survival (DFS). The fusion radiomics signature of the T2WI, cT1WI, and ADC maps achieved a better predictive efficacy for LVI than either of them alone. The proposed radiomics nomogram, incorporating the fusion radiomics signature and MRI-reported peritumoral edema, showed satisfactory capabilities of calibration and discrimination in both training and validation datasets, with AUCs of 0.919 (95% CI: 0.871-0.967) and 0.863 (95% CI: 0.726-0.999), respectively. The radiomics signature and nomogram-defined high-risk groups had a shorter DFS than those in the low-risk groups (both p < 0.05). Higher Rad-scores were independently associated with a worse DFS in the whole cohort (p < 0.05). The proposed nomogram, incorporating multiparametric MRI-based radiomics signature and MRI-reported peritumoral edema, achieved a satisfactory preoperative prediction of LVI and clinical outcomes in IDC patients. • The fusion radiomics signature of the T2WI, cT1WI, and ADC maps achieved a better predictive efficacy for LVI than either of them alone. • The proposed nomogram achieved a favorable prediction of LVI in IDC patients with AUCs of 0.919 and 0.863 in the training and validation datasets, respectively. • The radiomics model could classify patients into high- and low-risk groups with significant differences in DFS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.