Abstract

This study reports T2 and diffusion-tensor magnetic resonance imaging (MRI) studies of a mild open-skull, controlled cortical impact injury in rats (n=6) from 3 h to up to 14 d after traumatic brain injury (TBI). Comparison was made with longitudinal behavioral measurements and end-point histology. The impact was applied over the left primary forelimb somatosensory cortex (S1FL). The major findings were: 1) In the S1FL, T2 increased and fractional anisotropy (FA) decreased at 3 h after TBI and gradually returned toward normal by Day 14; 2) in the S1FL, the apparent diffusion coefficient (ADC) increased at 3 h, peaked on Day 2, and gradually returned toward normal at Day 14; 3) in the corpus callosum underneath the S1FL, FA decreased at 3 h to Day 2 but returned to normal at Day 7 and 14, whereas T2 and ADC were normal throughout; 4) heterogeneous hyperintense and hypointense T2 map intensities likely indicated the presence of hemorrhage but were not independently verified; 5) lesion volumes defined by abnormal T2, ADC, and FA showed similar temporal patterns, peaking around Day 2 and returning toward normal on Day 14; 6) the temporal profiles of lesion volumes were consistent with behavioral scores assessed by forelimb placement and forelimb foot fault tests; and 7) at 14 d post-TBI, there was substantial tissue recovery by MRI, which could either reflect true tissue recovery or reabsorption of edema. Histology performed 14 d post-TBI, however, showed a small cavitation and significant neuronal degeneration surrounding the cavitation in S1FL. Thus, the observed improvement of behavioral scores likely involves both functional recovery and functional compensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.