Abstract

A systematic comparison of magnetic resonance imaging (MRI) options for glioma diagnosis is lacking. To investigate multiple MR-derived image features with respect to diagnostic accuracy in tumor grading and survival prediction in glioma patients. T1 pre- and post-contrast, T2 and dynamic susceptibility contrast scans of 74 glioma patients with histologically confirmed grade were acquired. For each patient, a set of statistical features was obtained from the parametric maps derived from the original images, in a region-of-interest encompassing the tumor volume. A forward stepwise selection procedure was used to find the best combinations of features for grade prediction with a cross-validated logistic model and survival time prediction with a cox proportional-hazards regression. Presence/absence of enhancement paired with kurtosis of the FM (first moment of the first-pass curve) was the feature combination that best predicted tumor grade (grade II vs. grade III-IV; median AUC = 0.96), with the main contribution being due to the first of the features. A lower predictive value (median AUC = 0.82) was obtained when grade IV tumors were excluded. Presence/absence of enhancement alone was the best predictor for survival time, and the regression was significant (P < 0.0001). Presence/absence of enhancement, reflecting transendothelial leakage, was the feature with highest predictive value for grade and survival time in glioma patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.