Abstract

Genetically encoded fluorescent proteins (FPs) are highly utilized in cell biology research to study proteins of interest or signal processes using biosensors. To perform well in specific applications, these FPs require a multitude of tailored properties. It is for this reason that they need to be optimized by using mutagenesis. The optimization process through screening is often based solely on bacterial colony brightness, but multiple parameters ultimately determine the performance of an optimal FP. Instead of characterizing other properties after selection, we developed a multiparameter screening method based on four critical parametersscreened simultaneously: fluorescence lifetime, cellular brightness, maturation efficiency, and photostability. First, a high-throughput primary screen (based on fluorescence lifetime and cellular brightness using a mutated FP library) is performed in bacterial colonies. A secondary multiparameter screen based on all four parameters, using a novel bacterial-mammalian dual-expression vector enables expression of the best FP variants in mammalian cell lines. A newly developed automated multiparameter acquisition and cell-based analysis approach for 96-well plates further increased workflow efficiency. We used this protocol to yield the record-bright mScarlet, a fast-maturating mScarlet-I, and a photostable mScarlet-H. This protocol can also be applied to other FP classes or Förster resonance energy transfer (FRET)-based biosensors with minor adaptations. With an available mutant library of a template FP and a complete and tested laboratory setup, a single round of multiparameter screening (including the primary bacterial screen, secondary mammalian cell screen, sequencing, and data processing) can be performed within 2 weeks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call