Abstract

AbstractIn this work, we consider the problem of nonlinear system identification using data to learn multiple and often coupled parameters that allow a simulator to more accurately model a physical system or mechanism and close the so-called reality gap for more accurate robot control. Our approach uses iterative residual tuning (IRT), a recently developed derivative-free system identification technique that utilizes neural networks and visual observation to estimate parameter differences between a proposed model and a target model. We develop several modifications to the basic IRT approach and apply it to the system identification of a five-parameter model of a marble rolling in a robot-controlled labyrinth game mechanism. We validate our technique both in simulation—where we outperform two baselines—and on a real system, where we achieve marble tracking error of 4% after just five optimization iterations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.