Abstract

In-Band Full-Duplex (FDX) and MultiPacket Reception (MPR) are two transmission technologies that can be used together to improve the overall network capacity. However, the FDX Self-Interference Cancellation (SIC) techniques only filter part of the transmitted signal from the reception. This paper analyses how the FDX SIC residual noise influences the performance of MPR systems. It considers power diversity MPR, based on interference cancellation (IC) techniques, and time/frequency spreading MPR, such as code division multiple access or network diversity multiple access. The FDX coverage range is related with the FDX SIC attenuation. It is shown that the aggregate throughput can be increased by a factor P + 1 for P MTs when IC-based MPR is used for short range communications, but broader ranges require other less efficient MPR approaches. It is also shown that half-duplex can coexist with the FDX communications, providing an enlarged coverage outside the FDX communication range.1

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.