Abstract

Metabolic dysfunction in the liver represents a predominant feature in the early stages of alcohol-associated liver disease (ALD). However, the mechanisms underlying this are only partially understood. To investigate the metabolic characteristics of the liver in ALD, we did a relative quantification of polar metabolites and lipids in the liver of mice with experimental ALD using untargeted metabolomics and untargeted lipidomics. A total of 99 polar metabolites had significant abundance alterations in the livers of alcohol-fed mice. Pathway analysis revealed that amino acid metabolism was the most affected by alcohol in the mouse liver. Metabolites involved in glycolysis and the TCA cycle were decreased, while glycerol 3-phosphate (G3P) and long-chain fatty acids were increased. Relative quantification of lipids unveiled an upregulation of multiple lipid classes, suggesting that alcohol consumption drives metabolism toward lipid synthesis. Results from enzyme expression and activity detection indicated that the decreased activity of mitochondrial glycerol 3-phosphate dehydrogenase contributed to the disordered metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.