Abstract

BackgroundPolygonatum sibiricum polysaccharides protect against obesity and NAFLD. However, the potential effects of PS rhizome aqueous extracts (PSRwe) on adiposity and hepatic lipid accumulation remains unexplored. PurposeElucidating the impact and underlying mechanism of PSRwe on HFD-induced obesity and liver fat depostition. Study design56 male mice, aged eight weeks, were divided into seven groups: Positive, four doses of PSRwe, Model, and Control. HFD was fed for eight weeks, followed by alternate-day gavage of orlistat and PSRwe for an additional eight-week period. Integrative analysis encompassing multiomics, physiological and histopathological, and biochemical indexes was employed. MethodsBody weight (BW); liver, fat and Lee's indexes; TC, TG, LDL-C, HDL-C, AST, ALT, FFA, leptin, and adiponectin in the liver and blood; TNFα, IL-6, and LPS in the colon, plasma, and liver; H&E, PAS and oil red O staining on adipose and liver samples were examined. OGTT and ITT were conducted The gut microbiome, microbial metabolome, colonic and liver transcriptome, plasma and liver metabolites were investigated. ResultsPSRwe at the dosage of 7.5 mg/kg demonstrated significant and consistent reduction in BW and hepatic fat deposition than orlistat. PSRwe significantly decreased TC, TG, LDL-C, LEP, FFA levels in blood and liver. PSRwe significantly enhanced the relative abundance of probiotics including Akkermansia muciniphila, Bifidobacterium pseudolongum, Lactobacillus reuteri, and metabolic pathways including glycolysis and fatty acids β-oxidation. The 70 up-regulated microbial metabolites in PSRwe-treated mice mainly involved in nucleotides and amino acids metabolism, while 40 decreased metabolites primarily associated with lipid metabolism. The up-regulated colonic differentially expressed genes (DEGs) participate in JAK-STAT/PI3K-Akt/FoxO signaling pathway, serotonergic/cholinergic/glutamatergic synapses, while the down-regulated DEGs predominantly focused on fat absorption and transport. The up-regulated liver DEGs mainly concentrated on fatty acid oxidation and metabolism. Liver metabolisms revealed 131 differential metabolites, among which carnitine and oxidized lipids significantly increased in PSRwe-treated mice. In plasma, the 58 up-regulated metabolites mainly participate in co-factors/vitamins metabolism while 154 down-regulated ones in fatty acids biosynthesis. Comprehensive multiomics association analysis revealed significant associations between gut microbiota and colonic/liver gene expression, and suggested exogenous and endogenous betaine may be active compound in alleviating HFD-induced symptoms. ConclusionPSRwe effectively mitigate HFD-induced obesity and hepatic steatosis by increasing beneficial bacteria, reducing colonic fat digestion/absorption, increasing hepatic lipid metabolism, and elevating betaine levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.