Abstract

Exposure to high fat diet (HFD) and persistent organic pollutants including polychlorinated biphenyls (PCBs) is associated with liver injury in human populations and non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) in animal models. Previously, exposure of HFD-fed male mice to the non-dioxin-like (NDL) PCB mixture Aroclor1260, dioxin-like (DL) PCB126, or Aroclor1260 + PCB126 co-exposure caused toxicant-associated steatohepatitis (TASH) and differentially altered the liver proteome. Here unbiased mRNA and miRNA sequencing (mRNA- and miRNA- seq) was used to identify biological pathways altered in these liver samples. Fewer transcripts and miRs were up- or down- regulated by PCB126 or Aroclor1260 compared to the combination, suggesting that crosstalk between the receptors activated by these PCBs amplifies changes in the transcriptome. Pathway enrichment analysis identified “positive regulation of Wnt/β-catenin signaling” and “role of miRNAs in cell migration, survival, and angiogenesis” for differentially expressed mRNAs and miRNAs, respectively. We evaluated the five miRNAs increased in human plasma with PCB exposure and suspected TASH and found that miR-192–5p was increased with PCB exposure in mouse liver. Although we observed little overlap between differentially expressed mRNA transcripts and proteins, biological pathway-relevant PCB-induced miRNA-mRNA and miRNA-protein inverse relationships were identified that may explain protein changes. These results provide novel insights into miRNA and mRNA transcriptome changes playing direct and indirect roles in the functional protein pathways in PCB-related hepatic lipid accumulation, inflammation, and fibrosis in a mouse model of TASH and its relevance to human liver disease in exposed populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call