Abstract
The large-scale integration of intermittent and uncertain renewable energy poses challenges for power system scheduling, especially for peak-shaving. In this paper, a multi-objective unit commitment model of jointly concentrating solar power plant and wind farm for providing peak-shaving considering operational risk (RMUC) is proposed. A concentrating solar power (CSP) plant is employed to improve renewable energy consumption and compensate wind power fluctuations. Firstly, an operational risk model under renewable energy integration with intermittency is constructed to quantify risks of wind curtailment and load shedding. Then, a novel RMUC model is established by incorporating operational risk into the unit commitment (UC) model, which can optimally allocate operational flexibility of power systems over spatial and temporal domains to reduce operational risk. The proposed model can co-optimize the uncertainty level and the peak-shaving operation, which is able to obtain an optimal trade-off between peak-shaving effect and reliability. Finally, the proposed model is applied on an IEEE six-bus test system and on a simplified real power system for verification, and the cost-effectiveness of the CSP plant in reducing the operational risk and providing peak-shaving is quantified.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical Power & Energy Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.