Abstract

This paper examines the development of a multi-objective tool, called “ALL_WATER”, in optimizing Water Resources Management. The objectives of satisfying demand and reducing costs were taken into consideration while at the same time respecting water salinity requirements and hydraulic constraints. A Multi-Objective Genetic Algorithm (MOGA) and the PARETO optimality concept were used to resolve the formulated problem. The tool developed was used to help optimize the daily management schedule of a real case study in Tunisia. The hydraulic system is made up of three surface water sources, one demand site, two transfer links and three supply links. Within a short computation time, a PARETO front was identified made up of a set of 72 optimal solutions. The modeling approach and the decision-making flexibility, both shown in the case study, prove that the developed tool is able to efficiently identify a set of optimal solutions on a PARETO front. The developed tool will be able to be used for a large variety of water management problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.