Abstract

Integrated a fully developing three-dimensional heat transfer and flow model, a multi-objective optimization aims to fulfill the geometric design for double-tube heat exchangers with inner corrugated tube is investigated in this work with RSM. Dimensionless corrugation pitch (p/D), dimensionless corrugation height (H/D), dimensionless corrugation radius (r/D) and Reynolds number (Re) are considered as four design parameters. Considering the process parameters, the characteristic numbers involving heat transfer characteristic, resistance characteristic and overall heat transfer performance calculated by CFD, and are served as objective functions to the RSM (Nuc, fc, Nuc/Nus, fc/fs and η in this paper). The results of optimal designs are a set of multiple optimum solutions, called ‘Pareto optimal solutions’. It reveals the identical tendency of Nuc/Nus and fc/fs reflecting the conflict between them that means augmenting the heat transfer performance with various design parameters in the optimal situation inevitably sacrificed the increase of flow resistance. According to the Pareto optimal curves, the optimum designing parameters of double pipe heat exchanger with inner corrugated tube under the constrains of Nuc/Nus ≥ 1.2 are found to be P/D = 0.82, H/D = 0.22, r/D = 0.23, Re = 26,263, corresponding to the maximum value of η = 1.12.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call