Abstract

Principal component analysis (PCA) coupled with Taguchi methods are employed in the study for developing multiple quality characteristics optimization of pulsed plasma arc welding SS400 steel pipe with foamed aluminum liner (SPFAL). The quality characteristics investigated are the micro-hardness, the compression strength, and the bending strength of the weldments. Eight control factors selected are the tip aperture (Factor A), plasma base current (Factor B), plasma pulse current (Factor C), duty cycle (Factor D), pulse frequency (Factor E), shielding gas (Factor F), plasma gas (Factor G), and welding velocity (Factor H), respectively. It is shown by the experimental results that the optimal parameter combination of the pulsed plasma arc welding process is A1 (tip aperture: O1.5mm), B3 (plasma base current: 30A), C3 (plasma pulse current: 100A), D2 (duty cycle: 50%), E3 (pulse frequency: 300Hz), F2 (shielding gas: 14L/min), G3 (plasma gas: 0.4L/min), and H2 (welding velocity: 4RPM). Moreover, it is ascertained from the analysis of variance (ANOVA) results that plasma base current (B), plasma pulse current (C), duty cycle (D), and welding velocity (H) are the most important control factors in the process design, and thus strict control must be applied to them. They account for 75.02% of the total variance. The experimental results likewise show that the best process design could indeed enhance the multiple quality characteristics of the pulsed plasma arc welded SPFAL as 3020kgf of the bending strength, 13650kgf of the compression strength, and 180.4Hv of the hardness, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.