Abstract

The optimal placement of electronic components on a printed circuit board is a well-studied optimization task. However, despite the involvement of multiple conflicting objectives, researchers have mainly used a single objective of minimizing the overall wire length or minimizing the overall heat generation or minimizing the overall time delay in its functioning. In this paper, the problem is treated as a two-objective optimization problem of minimizing the overall wire length and minimizing the failure-rate of the board arising due to uneven local heat accumulation. The proposed strategy uses a novel representation procedure and a multiobjective evolutionary algorithm capable of finding multiple Pareto-optimal solutions simultaneously. Moreover, the flexibility and efficacy of the proposed strategy have been demonstrated by simultaneously optimizing the placement of components and the layout of the board. The convergence and the extent of spread obtained in the solutions reliably by repetitive applications of the proposed procedure should encourage further application of the approach to more complex placement design problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call