Abstract

Particle Swarm Optimization (PSO) is easier to realize and has a better performance than evolutionary algorithm in many fields. This paper proposes a novel multi-objective particle swarm optimization algorithm inspired from Game Strategies (GMOPSO), where those optimized objectives are looked as some independent agents which tend to optimize own objective function. Therefore, a multi- player game model is adopted into the multi-objective particle swarm algorithm, where appropriate game strategies could bring better multi-objective optimization performance. In the algorithm, novel bargain strategy among multiple agents and nondominated solutions archive method are designed for improving optimization performance. Moreover, the algorithm is validated by several simulation experiments and its performance is tested by different benchmark functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.