Abstract

This paper proposes a multi-objective optimisation model and particle swarm optimisation solution method for the robust dynamic scheduling of permutation flow shop in the presence of uncertainties. The proposed optimisation model for robust scheduling considers utility, stability and robustness measures to generate robust schedules that minimise the effect of different real-time events on the planned schedule. The proposed solution method is based on a predictive-reactive approach that uses particle swarm optimisation to generate robust schedules in the presence of real-time events. The evaluation of both the optimisation model and solution method are conducted considering different types of disruptions including machine breakdown and new job arrival. The obtained results showed that the proposed model and solution method gives better results than a bi-objective model that considers only utility and stability measures [1] and the classical makespan model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.