Abstract

SummaryFinding an optimum design that satisfies all performances in a design problem is very challenging. To overcome this problem, multiobjective optimization methods have been researched to obtain Pareto optimum solutions. Among the different methods, the weighted sum method is widely used for its convenience. However, since the different weights do not always guarantee evenly distributed solutions on the Pareto front, the weights need to be determined systematically. Therefore, this paper presents a multiobjective optimization using a new adaptive weight determination scheme. Solutions on the Pareto front are gradually found with different weights, and the values of these weights are adaptively determined by using information from the previously obtained solutions' positions. For an n‐objective problem, a hyperplane is constructed in n ‐dimensional space, and new weights are calculated to find the next solutions. To confirm the effectiveness of the proposed method, benchmarking problems that have different types of Pareto front are tested, and a topology optimization problem is performed as an engineering problem. A hypervolume indicator is used to quantitatively evaluate the proposed method, and it is confirmed that optimized solutions that are evenly distributed on the Pareto front can be obtained by using the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call