Abstract
This paper aims to optimize the crashworthiness capability of glass-reinforced epoxy composites (GFRE) over wrapped polyvinyl chloride (PVC) circular tubes with cutouts. The intended tubes were prepared by a wet wrapping method; then subjected to quasi-static axial compression. To compute crashworthiness indications, three design parameters, each at three levels, were used. The design parameters are the hole diameter (d), the hole's number (n), and the hole position (L). A few runs were accompanied by the L9 orthogonal array based on the Taguchi technique. With the lowest initial peak crash force (Fip) and the largest absorbed energy (U), the optimal parameters were found. Furthermore, the main effect, signal-to-noise ratio (S/N), as well as the analysis of variance (ANOVA), have been studied using the commercial software program MINITAB 18. Furthermore, to optimize the process parameters in terms of the crashworthiness indicators, desirability function analysis (DFA) was applied. Lastly, tests for confirmation were performed to verify the predicted values in light of the experimental results and compare them with the intact tubes. Regarding the single optimization, the optimum Fip tube is smaller than the intact PVC tube and intact hybrid tube, at 24.01 and 72.85 %, respectively. Nonetheless, the optimal U was 21.43 % lower than the intact hybrid tube and 152.75 % greater than the intact PVC tube. While, for Fip and U, the multi-objective optimization specimen achieves 5.13 and 70.02 % greater than the intact PVC tube. But it was 62.44 % and 47.14 % less than what the intact hybrid tube had accomplished.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.