Abstract

In order to solve the contradiction between the opening and closing time of the high speed on/off valve for space propulsion systems of the liquid rocket engine, a pneumatic pilot-operated high speed on/off valve is proposed and multiobjective optimization for the opening and closing time of the valve is carried out in this paper. Based on the analysis of the working mechanism of the valve, the mathematical models for the pilot valve and the main valves are established respectively. The Plackett-Burman design is used to select the optimization variables which influence the performance of the response time significantly. The central composite design is used to obtain the sample points and establish second-order response surface models of the response time. The NSGA-II is used to obtain the Pareto front of the optimization objectives. The optimized opening and closing time can be reduced by 17.7% and 37.4% respectively. A prototype based on the optimized parameters is manufactured and tested to verify the accuracy of the multiobjective optimization results. The test results verify the validity of the optimization approach for the proposed valve in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.