Abstract

The optimization procedure is worked out for finding an optimal content of phases in metal–ceramic composites in case of conflicting objectives regarding thermo-mechanical properties of the material for a specific target application. Relationships between the material composition and effective properties of the composite are calculated by employing several methods of continuum micromechanics. A constrained minimization problem is solved for a single objective function based on the weighted squared distances from the best available thermo-mechanical properties for the material system selected. A compound block diagram is proposed for quick assessment of the consequences of deviating from the optimal composition. The developed procedure is applied to practical examples of Al2O3–Cu composites for brake disks and Al2O3–NiAl composites for valves of potential use in automotive industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.