Abstract

The paper addresses the optimal design of parallel manipulators based on multi-objective optimization. The objective functions used are: Global Conditioning Index (GCI), Global Payload Index (GPI), and Global Gradient Index (GGI). These indices are evaluated over a required workspace which is contained in the complete workspace of the parallel manipulator. The objective functions are optimized simultaneously to improve dexterity over a required workspace, since single optimization of an objective function may not ensure an acceptable design. A Multi-Objective Evolution Algorithm (MOEA) based on the Control Elitist Non-dominated Sorting Genetic Algorithm (CENSGA) is used to find the Pareto front.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.