Abstract

Hydrogen cooler is a key equipment of the precooling unit in hydrogen refueling stations with the requirement of high heat transfer efficiency, high compactness and high pressure resistance. Printed circuit heat exchanger is a promising candidate for the hydrogen cooler due to its great performance on extremely high pressure and high temperature working environment. In this paper, a hydrogen cooler with a thermal load of 72 kW is firstly designed by using the segmented thermal design method and logarithmic mean temperature difference method. Then, the capital model of the hydrogen cooler is established to evaluate the performance using the exergoeconomic method. The results show that the operating cost, which is related to exergy destruction, accounts for 94.5% of the total cost of the hydrogen cooler. The thermal exergy destruction accounts for 92.4% of the total exergy destruction. Finally, the geometrical parameters of the channel are optimized by using the multi-objective optimization. The channel radius shows the most significant impact on the construction cost and operating cost among the three geometrical parameters. Compared with the coaxial tube evaporators, the printed circuit heat exchanger has better performance on the volume and total cost, which are reduced by 88.0% and 4.0% respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.