Abstract
In line with Industry 5.0, ergonomic factors have recently received more attention in balancing assembly lines to enhance the human-centric aspect. Meanwhile, today’s mass-customized trend yields manufacturers to offset the assembly lines for different product variants. Thus, this study addresses the mixed-model assembly line balancing problem (MMALBP) by considering worker posture. Digital human modeling and posture assessment technologies are utilized to assess the risks of work-related musculoskeletal disorders using a method known as rapid entire body analysis (REBA). The resulting MMALBP is formulated as a mixed-integer linear programming (MILP) model while considering three objectives: cycle time, maximum ergonomic risk of workstations, and total ergonomic risks. An enhanced non-dominated sorting genetic algorithm (E-NSGA-II) is developed by incorporating a local search procedure that generates neighborhood solutions and a multi-criteria decision-making mechanism that ensures the selection of promising solutions. The E-NSGA-II is benchmarked against Epsilon-constraint, MOGA, and NSGA-II while solving a case study and also test problems taken from the literature. The computational results show that E-NSGA-II can find promising Pareto front solutions while dominating the considered methods in terms of performance metrics. The robustness of E-NSGA-II results is evaluated through one-way ANOVA statistical tests. The analysis of results shows that a smooth distribution of time and ergonomic loads among the workstations can be achieved when all three objectives are simultaneously considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: CIRP Journal of Manufacturing Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.