Abstract

Seeking high profitability by improving energy efficiency and production quality is the prime goal of manufacturing industries. However, achieving this aim involves the realization of several conflicting objectives. In carbon fiber industry, the stabilization process is the most vital step with high energy consumption. The aim of this study is to use intelligent modeling methods in the stabilization process to maximize energy efficiency while considering better production quality, avoiding defects, and not scarifying the prediction accuracy. To this aim, a modified DOE method was used to reduce the number of required experiments. The mechanical and physical properties were then modeled based on input-output data derived from the experiments. In this way, the SVR method is used to develop a set of mathematical models for mechanical and physical properties of the fibers. The skin-core defect and energy consumption were considered as objective functions within the given range of physical and mechanical properties of fibers. The state-of-the-art NSGA-II algorithm used to find the optimum Pareto front, including non-dominated solutions among these conflicting objective functions. The results showed that by using the integrated NSGA-II and technique for order preference by similarity to ideal solution (TOPSIS), the energy efficiency of the system was improved. Moreover, the discussions showed how similar hybrid algorithms with high accuracy can be used by other industries to reduce the overall energy consumptions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.