Abstract

The axial turbine is one of the most challenging components of gas turbines for industrial and aerospace applications. With the ever-increasing requirement for high-aerodynamic performance blades, three-dimensional aerodynamic shape optimization is of great importance. In this research, the rear part of a gas turbine consisting of a one-stage axial turbine is optimized numerically. A useful optimization algorithm is presented to improve the efficiency and/or pressure ratio of the axial turbine with two different objective functions. The three-dimensional blade-shape optimization is employed to study the effects of the turbine stator and rotor lean and sweep angles on the turbine performance. The investigation is carried out at the turbine design speed. By coupling a verified computational fluid dynamics simulation code with the genetic algorithm, an automated design procedure is prepared. Geometry candidates for the optimization algorithm are generated by re-stacking of the two-dimensional airfoil sections. Three-dimensional, turbulent, and compressible flow field is numerically investigated via a Navier–Stokes solver to calculate various objective functions. Experimental results of the gas turbine are used for specifying the boundary conditions and validation of the simulation results. The proposed method results in 1.3% and 1.5% improvements in the turbine stage efficiency in design speed and reduced mass parameter at choke condition, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.