Abstract

This paper deals with multiobjective optimization of laminated cylindrical shells to maximize a weighted sum of the frequency and buckling load under external load. The layer fibre orientation is used as the design variable and the multiobjective optimization is formulated as the weighted combinations of the frequency and buckling under external load. The first order shear deformation theory is used for the finite element formulation of the laminated shells. Five shell configurations with eight layers are considered as candidate designs. The modified feasible direction method (MFD) is used as optimization routine. For this purpose, a program based on FORTRAN is used for the optimization of the laminated shells. Finally, the effect of different weighting ratios, shell aspect ratio, shell thickness-to-radius ratios and boundary conditions on the optimal designs is investigated and the results are compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.