Abstract

In this paper, cooling performance of conformal cooling channel in plastic injection molding (PIM) is numerically and experimentally examined. To examine the cooling performance, cycle time and warpage are considered. Melt temperature, injection time, packing pressure, packing time, cooling time, and cooling temperature are taken as the design variables. A multi-objective optimization of the process parameters is then performed. First, the process parameters of conformal cooling channel are optimized. Numerical simulation in the PIM is so intensive that a sequential approximate optimization using a radial basis function network is used to identify a pareto-frontier. It is found from the numerical result that the cooling performance of conformal cooling channel is much improved, compared to the conventional cooling channel. Based on the numerical result, the conformal cooling channel is developed by using additive manufacturing technology. The experiment is then carried out to examine the validity of the conformal cooling channel. Through numerical and experimental result, it is confirmed that the conformal cooling channel is effective to the short cycle time and the warpage reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.