Abstract

In the present study, a model is presented to optimize the fabrication parameters of natural fiber reinforced polyester matrix composites with dual fillers. In particular, jute fiber mat was chosen as reinforcement and eggshell powder (ESP) and montmorillonite nanoclay (NC) were selected as fillers. The weight per square meter (GSM) of the fiber, the weight percentage of ESP and NC have been chosen as independent variables and the influence of these variables on tensile, flexural and impact strength of the composite has been inspected. The permutations of the different combinations of factors are intended to accomplish higher interfacial strength with the lowest possible number of tested specimens. The experiments were designed by the Taguchi strategy and a novel multi-objective optimization technique named COPRAS (COmplex PRoportional ASsessment of alternatives) was used to determine the optimal parameter combinations. Affirmation tests were performed with the optimal parameter settings and the mechanical properties were evaluated and compared. Experimental results show that fiber GSM and eggshell powder content are significant variables that improve mechanical strength, while the nanoclay appears less important.

Highlights

  • The need for low-cost and environment-friendly materials has been continuously increasing, with sustainability becoming a stringent requirement

  • All experimental data collected in the four modes of testing carried out are reported in Tables 1–4, referring to tensile, flexural, Charpy impact and Shore A hardness, respectively

  • Woven cottonized jute mats were acquired from local shops in Coimbatore, Tamilnadu region, India. as produced by Usha Corporation Limited (UCL)

Read more

Summary

Introduction

The need for low-cost and environment-friendly materials has been continuously increasing, with sustainability becoming a stringent requirement. This allowed some space for natural fiber composites, especially as the replacement of fiberglass: this process developed substantially at the beginning of this century, but is deemed to continue and grow, for the increasing availability and variety of ligno-cellulosic fibers for the purpose [1]. The selection of fibers for use in composites has normally been based on environmental together with economic considerations, e.g., the fact that the fiber is a by-product of another sector, e.g., textile, or that the local origin of the crop for fibers would result in reduced transportation costs. The replacement of oil-based polymers as matrices appears still cumbersome in terms of controlled processing and performance. A major challenge for the investigator is to obtain a sufficiently strong interface between the polymer matrix, which is normally hydrophobic, and vegetable fibers, whose nature is hydrophilic: in principle, this fact impedes the adhesion between the two phases, being detrimental for the composite properties

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.