Abstract

Although the agricultural sector is an important source of bioenergy production, this production can be considered sustainable when energy consumed and environmental emissions are optimal. As such, the assessment of energy flow, environmental emissions of walnut orchards in Alborz province of Iran and their simultaneous optimization by multi-objective imperialist competitive algorithm are the main goals of this investigation. Input-output energy analysis, IMPACT 2002+ method of life cycle assessment, and multi-objective imperialist competitive algorithm are used in the energy-environmental evaluation for optimization in this study. Results ascertain that energy uses of the entire output and input are computed to be 31,015 and 27200 MJ ha−1, respectively and that gasoline with 40% is the dominated consumer of energy. Moreover, energy use efficiency is 0.88, which indicates energy inefficiency in walnut production. Environmental results shows that On-Orchard emissions with a share more than 50% in ecosystem quality, human health, and climate changes and gasoline in resources category are the main hotspots. Multi-objective optimization illustrates that the reduction in total energy is 19316 MJ ha−1 (about 62%) and gasoline with 58% is the most energy saving input among all. On the other hand, the total weighted emission decreases by about 1.47Pt (about 40%). Generally, results reveal that timely maintenance can help orchardist attain close to optimal condition. Furthermore, the application of imperialist competitive algorithm not only can offer optimum pattern of walnut production, but also be extended to the world for different crops.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call