Abstract
The real-world optimisation of dynamic processes, such as batch processes, space applications and robotic problems, is usually a matter of several objectives and constraints. In many cases it is difficult to deal with such problems with conventional methods. Evolutionary methods provide an interesting alternative, with less programming and computational efforts. This paper presents four Evolutionary methods for solving complex multiobjective problems applied to an illustrative example: the optimisation and control of the industrial beer fermentation. The first method is based on aggregating functions, and the others adopt a Pareto set approach.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.