Abstract

Photocatalytic water splitting into hydrogen production provides a new avenue to produce clean chemical fuels. However, developing high‐efficiency photocatalytic materials still remains a challenge till now. Herein, multiobjective‐optimization MoS2/Cd‐ZnIn2S4/CdS (MS/CZIS/CS) composites are successfully constructed by an in situ structure‐tailored technique. Benefiting from the synergistic feature integrating sulfur vacancy, II‐type CZIS/CS heterojunction and Schottky‐type MS/CS heterojunction, such composites not only effectively steer photogenerated carrier transfer but also markedly expedite surface reaction kinetics for hydrogen reduction reaction. As a result, an optimal hydrogen evolution rate of 11.49 mmol g−1 h−1 is achieved over the MS/CZIS/CS catalysts, which is approximately 4.79 times higher than that of pristine ZIS (2.40 mmol g−1 h−1). This work provides some new inspirations for the steering of carrier transfer and the design of multiobjective‐optimization photocatalysts with high efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.