Abstract

We propose the use of the parallel tabu search algorithm (PTS) to solve combinatorial inverse design problems in integrated photonics. To assess the potential of this algorithm, we consider the problem of beam shaping using a two-dimensional arrangement of dielectric scatterers. The performance of PTS is compared to one of the most widely used optimization algorithms in photonics design, the genetic algorithm (GA). We find that PTS can produce comparable or better solutions than the GA, while requiring less computation time and fewer adjustable parameters. For the coherent beam shaping problem as a case study, we demonstrate how PTS can tackle multiobjective optimization problems and represent a robust and efficient alternative to GA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.