Abstract

Combinatorial therapies are required to treat patients with advanced cancers that have become resistant to monotherapies through rewiring of redundant pathways. Due to a massive number of potential drug combinations, there is a need for systematic approaches to identify safe and effective combinations for each patient, using cost-effective methods. Here, we developed an exact multiobjective optimization method for identifying pairwise or higher-order combinations that show maximal cancer-selectivity. The prioritization of patient-specific combinations is based on Pareto-optimization in the search space spanned by the therapeutic and nonselective effects of combinations. We demonstrate the performance of the method in the context of BRAF-V600E melanoma treatment, where the optimal solutions predicted a number of co-inhibition partners for vemurafenib, a selective BRAF-V600E inhibitor, approved for advanced melanoma. We experimentally validated many of the predictions in BRAF-V600E melanoma cell line, and the results suggest that one can improve selective inhibition of BRAF-V600E melanoma cells by combinatorial targeting of MAPK/ERK and other compensatory pathways using pairwise and third-order drug combinations. Our mechanism-agnostic optimization method is widely applicable to various cancer types, and it takes as input only measurements of a subset of pairwise drug combinations, without requiring target information or genomic profiles. Such data-driven approaches may become useful for functional precision oncology applications that go beyond the cancer genetic dependency paradigm to optimize cancer-selective combinatorial treatments.

Highlights

  • Combination therapies have become the standard of care to treat many complex diseases, including advanced cancers, which have developed resistance to monotherapies

  • We demonstrate the performance of the method in the context of BRAF-V600E melanoma treatment, where the optimal solutions predicted a number of co-inhibition partners for vemurafenib, a selective BRAF-V600E inhibitor, approved for advanced melanoma

  • We introduced a multiobjective optimization framework for designing effective and safe drug combinations by simultaneous optimization of therapeutic and nonselective effects

Read more

Summary

Introduction

Combination therapies have become the standard of care to treat many complex diseases, including advanced cancers, which have developed resistance to monotherapies. The mechanistic basis of therapeutically beneficial combinations remain still poorly understood, but recent findings in cancer cell line screens suggest that targets of highly synergistic drug combinations are likely to interact at the level of signaling pathways, either targeting the same or functionally opposite pathways, in such a way that the combined effect is greater than the sum of the individual effects [6]. This can occur for example by combinatorial inhibition of two orthogonal pathways or by targeting compensatory mechanisms via pathway cross-talks [7]. Combination synergy and expected efficacy alone are not sufficient determinants when designing safe and effective treatment options

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call