Abstract

This paper presents a new approach to the tolerance synthesis of the component parts of assemblies by simultaneously optimizing three manufacturing parameters: manufacturing cost, including tolerance cost and quality loss cost; machining time; and machine overhead/idle time cost. A methodology has been developed using the genetic algorithm technique to solve this multi-objective optimization problem. The effectiveness of the proposed methodology has been demonstrated by solving a wheel mounting assembly problem consisting of five components, two subassemblies, two critical dimensions, two functional tolerances, and eight operations. Significant cost saving can be achieved by employing this methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.