Abstract
In automotive industry, structural optimization for crashworthiness criteria is of special importance. Due to the high nonlinearities, however, there exists substantial difficulty to obtain accurate continuum or discrete sensitivities. For this reason, metamodel or surrogate model methods have been extensively employed in vehicle design with industry interest. This paper presents a multiobjective optimization procedure for the vehicle design, where the weight, acceleration characteristics and toe-board intrusion are considered as the design objectives. The response surface method with linear and quadratic basis functions is employed to formulate these objectives, in which optimal Latin hypercube sampling and stepwise regression techniques are implemented. In this study, a nondominated sorting genetic algorithm is employed to search for Pareto solution to a full-scale vehicle design problem that undergoes both the full frontal and 40% offset-frontal crashes. The results demonstrate the capability and potential of this procedure in solving the crashworthiness design of vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.