Abstract

For part I see ibid., 26-37. The evolutionary approach to multiple function optimization formulated in the first part of the paper is applied to the optimization of the low-pressure spool speed governor of a Pegasus gas turbine engine. This study illustrates how a technique such as the multiobjective genetic algorithm can be applied, and exemplifies how design requirements can be refined as the algorithm runs. Several objective functions and associated goals express design concerns in direct form, i.e., as the designer would state them. While such a designer-oriented formulation is very attractive, its practical usefulness depends heavily on the ability to search and optimize cost surfaces in a class much broader than usual, as already provided to a large extent by the genetic algorithm (GA). The two instances of the problem studied demonstrate the need for preference articulation in cases where many and highly competing objectives lead to a nondominated set too large for a finite population to sample effectively. It is shown that only a very small portion of the nondominated set is of practical relevance, which further substantiates the need to supply preference information to the GA. The paper concludes with a discussion of the results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.