Abstract

There is huge amount of data available in health industry which is found difficult in handing, hence mining of data is necessary to innovate the hidden patterns and their relevant features. Recently, many researchers have devoted to the study of using data mining on disease diagnosis. Mining bio-medical data is one of the predominant research area where evolutionary algorithms and clustering techniques are emphasized in diabetes disease diagnosis. Therefore, this research focuses on application of evolution clustering multi-objective optimization algorithm (ECMO) to analyze the data of patients suffering from diabetes disease. The main objective of this work is to maximize the prediction accuracy of cluster and computation efficiency along with minimum cost for data clustering. The experimental results prove that this application has attained maximum accuracy for dataset of Pima Indians Diabetes from UCI repository. In this way, by analyzing the three objectives, ECMO could achieve best Pareto fronts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.