Abstract

A formal inverse design procedure which combines the advantageous aspects of both multiobjective optimization and system-by-design is proposed. The solution technique provides a systematic method to discover the various tradeoffs inherent in engineering design. To showcase the robustness and flexibility of the proposed approach, two unique highly directive nanodevices are explored. First, the problem of achieving highly directive scattering from core–shell nanoparticles is investigated. Then, a Yagi–Uda nanoloop array is designed with the goal of producing highly directive radiation patterns. The results of these studies reveal the underlying physics of these devices while also providing the engineer with a wide variety of candidate designs to choose from, showcasing the utility of the proposed metamaterials-by-design approach based on multiobjective optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.