Abstract

An optimisation methodology is developed and applied on a FRP sandwich body of an electric vehicle – ZBee, where single-objective and multi-objective optimisation studies are performed stepwise using a commercially available software package. The single-objective optimisation allows the identification of the load paths within the composite body, according to the loading conditions previously defined. Within the multi-objective optimisation, the optimum thickness and distribution for each of the layers that form the composite body are searched within the design space so as to obtain the best performance with respect to weight, material cost, global and local stiffness. Strength requirements are also considered as constraints within the optimisation. A conflict situation appears when several objectives are considered within the optimisation, meaning that an increased performance in one objective may often lead to a decreased performance for the others. Therefore, a trade-off between objectives is needed. The interpretation of results is partially made by using trade-off plots, the so-called Pareto frontiers. A method for the overall selection of the most beneficial solutions is proposed and applied in order to choose between the best obtained solutions according to the importance of the objectives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.