Abstract
In this paper, the supercritical CO2 (sCO2) recompression cycle combined cycles are analysed, where the bottom cycles include transcritical CO2 (tCO2), organic Rankine cycle (ORC) or trilateral flash cycle (TFC). The working fluid for the ORC and the TFC can be R123, R245fa, or n-Pentane. We implemented four sub-models in our calculation: 1) thermodynamic model; 2) heat transfer model; 3) economic model; 4) exergoeconomic model. The specific exergy costing (SPECO) method is utilised in the exergoeconomic model, and the multi-objective genetic algorithm is adopted to give the Pareto front of total unit exergy cost of the product (cPtot) and the thermal efficiency. Our model has been validated with the existing literature. The results show that the thermal efficiency standalone CO2 achieved 41.66% while attaching the tCO2, ORC, or TFC bottom cycle could improve the thermal efficiency by 1.1%, 1.68%, or 0.05%, respectively. In the meantime, the (cPtot, which is the representation of the cost, decreased by 0.2$/GJ for ORC and increased by 0.06$/GJ and 1.05$/GJ for tCO2 and TFC respectively. The influence of different working fluids for ORC and TFC is not obvious. Therefore, attaching the ORC as the bottom cycle will bring about the best performance and lowest cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.