Abstract

Laser deposition is an advanced manufacturing technology capable of enhancing service life of engineering components by hard-facing their functional surfaces. There are quite a number of parameters involved in the process and also desirable output characteristics. These output characteristics are often independently optimised and which may lead to poor outcome for other characteristics, hence the need for multi-objective optimisation of all the output characteristics. In this study, a laser deposition of Ti-6Al-4V wire and tungsten carbide powder was made on a Ti-6Al-4V substrate with a view to achieve a metallurgical bonded metal matrix composite on the substrate. Single clads were deposited with a desire to optimise the composite clad characteristics (height, width and reinforcement fraction) for the purpose of surface coating. Processing parameters (laser power, traverse speed, wire feed rate, powder feed rate) were varied, the experiment was planned using Taguchi method and output characteristics were analysed using principal component analysis approach. The results indicated that the parameters required for optimised clad height, width, and reinforcement fraction necessary for surface coating is laser power of 1800 W, traverse speed of 200 mm/min, wire feed rate 700 mm/min and powder feed rate of 30 g/min. The powder feed rate was found to most significantly contribute 43.99%, followed by traverse speed 39.77%, laser power 15.87% with wire feed rate having the least contribution towards the multi-objective optimisation. Confirmation results showed that clad width and reinforcement fraction were significantly improved by the optimised parameters. The multi-objective optimisation procedure is a useful tool necessary to identify the process factors required to enhance output characteristics in laser processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call