Abstract

Generation maintenance scheduling (GMS) is one of the most important scheduling problems in the restructured power systems. The maintenance time interval of generation units is the crucial factor of GMS for an operation lifespan of generation units, particularly within the smart grid which needs high reliability. Accordingly, this study proposes a multi-objective-GMS (MO-GMS) optimisation model for maintenance scheduling of generation units based on the global criterion approach, adopting a suitable compromise function. The proposed MO-GMS model determines the maintenance intervals, aims to maximise both the generation company's (GenCo's) financial returns from selling electricity and the system reserve at every time interval from the independent system operator (ISO) standpoint. This method searches the optimal maintenance weeks for each generation unit, considering the objectives of both GenCo and ISO, simultaneously. The proposed MO-GMS model is formulated as a mixed-integer non-linear programming problem and examined on the IEEE 24-bus and IEEE 118-bus test systems. The success of the proposed multi-objective model is validated by comparing the obtained results with intelligent optimisation algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.