Abstract
Genetic algorithm (GA) and differential evolution (DE) are metaheuristic algorithms that have shown a favorable performance in the optimization of complex problems. In recent years, only GA has been widely used for single-objective optimal design of reinforced concrete (RC) structures; however, it has been applied for multiobjective optimization of steel structures. In this article, the total structural cost and the roof displacement are considered as objective functions for the optimal design of the RC frames. Using the weighted sum method (WSM) approach, the two-objective optimization problem is converted to a single-objective optimization problem. The size of the beams and columns are considered as design variables, and the design requirements of the ACI-318 are employed as constraints. Five numerical models are studied to test the efficiency of the GA and DE algorithms. Pareto front curves are obtained for the building models using both algorithms. The detailed results show the accuracy and convergence speed of the algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.