Abstract
Abstract The present study proposes the noise estimation of Magnetic Resonance Imaging (MRI) data using multi-objective particle swarm optimisation (MOPSO). This adaptive noise estimation is based on the maximisation of the multiple quality measures, which enable the algorithm to achieve de-noising along with enhancement in the image features. The paper proposes two filtering approaches to de-noise MRI data. In first, MOPSO based noise estimation is followed by non-local statistics based Kalman filter, whereas, in the second approach, MOPSO based noise estimation is followed by Linear Minimum Mean Square Error (LMMSE) filter. The impact of de-noising on segmentation of MRI data has also been studied, for this purpose enhanced fuzzy c-means algorithm has been applied on filtered MRI data. The de-noising and segmentation performance of MOPSO-non local Kalman filter and MOPSO-LMMSE filters has been evaluated and compared with Wavelet filter, Wiener filter, non-local mean filter, standard Kalman and standard LMMSE filter. The proposed noise estimation approach followed by filtering is giving better de-noising and segmentation results as compared to standard filters considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.