Abstract
Negative Correlation Learning (NCL) [CHECK END OF SENTENCE], [CHECK END OF SENTENCE] is a neural network ensemble learning algorithm which introduces a correlation penalty term to the cost function of each individual network so that each neural network minimizes its mean-square-error (MSE) together with the correlation. This paper describes NCL in detail and observes that the NCL corresponds to training the entire ensemble as a single learning machine that only minimizes the MSE without regularization. This insight explains that NCL is prone to overfitting the noise in the training set. The paper analyzes this problem and proposes the multiobjective regularized negative correlation learning (MRNCL) algorithm which incorporates an additional regularization term for the ensemble and uses the evolutionary multiobjective algorithm to design ensembles. In MRNCL, we define the crossover and mutation operators and adopt nondominated sorting algorithm with fitness sharing and rank-based fitness assignment. The experiments on synthetic data as well as real-world data sets demonstrate that MRNCL achieves better performance than NCL, especially when the noise level is nontrivial in the data set. In the experimental discussion, we give three reasons why our algorithm outperforms others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.