Abstract
The soil monitoring network plays an important role in detecting the spatial distribution of soil attributes and facilitates sustainable land-use decision making. Reduced costs, higher speed, greater scope, and a loss of accuracy are necessary to design a regional monitoring network effectively. In this paper, we present a stochastic optimization design method for regional soil carbon and water content monitoring networks with a minimum sample size based on a modified particle swarm optimization algorithm equipped with multiobjective optimization technique. Our effort is to reconcile the conflicts between various objectives, that is, kriging variance, survey budget, spatial accessibility, spatial interval, and the amount of monitoring sites. We applied the method to optimize the soil monitoring networks in a semiarid loess hilly area located in northwest China. The results reveal that the proposed method is both effective and robust and outperforms the standard binary particle swarm optimization and spatial simulated annealing algorithm.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.