Abstract
In many engineering design problems, the explicit function form of objectives/constraints can not be given in terms of design variables. Given the value of design variables, under this circumstance, the value of those functions is obtained by some simulation analysis or experiments, which are often expensive in practice. In order to make the number of analyses as few as possible, techniques for model predictive optimization (also referred to as sequential approximate optimization or metamodeling) which make optimization in parallel with model prediction have been developed. In this paper, we discuss several methods using computational intelligence for this purpose along with applications to multi-objective optimization under static/dynamic environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.