Abstract

We discuss a method for the simultaneous and self-consistent fitting of a set of intensity or emissivity spatial profiles from several narrow-band x-ray pinhole images from argon-doped inertial confinement fusion implosion cores, and the space-integrated line spectrum. A Pareto genetic algorithm (PGA) combines the search and optimization capabilities of a single-objective genetic algorithm with the Pareto domination technique of multiobjective optimization. Further, the PGA search is followed up by a fine-tuning step based on a nonlinear least-squares-minimization procedure. The result is a robust search and reconstruction method that finds the optimal core spatial structure subject to multiple constraints. This method is independent of geometry inversions and could take advantage of not only optically thin but also optically thick image data. Results are shown for two combinations of three-objectives based on gated argon Heβ and Lyβ image data and the line spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.