Abstract

This paper proposes a new self-adaptive meta-heuristic (MH) algorithm for multiobjective optimisation. The adaptation is accomplished by means of estimation of distribution. The differential evolution reproduction strategy is modified and used in this dominance-based multiobjective optimiser whereas population-based incremental learning is used to estimate the control parameters. The new method is employed to solve aeroelastic multiobjective optimisation of an aircraft wing which optimises structural weight and flutter speed. Design variables in the aeroelastic design problem include thicknesses of ribs, spars and composite layers. Also, the ply orientation of the upper and lower composite skins are assigned as the design variables. Additional benchmark test problems are also use to validate the search performance of the proposed algorithm. The performance validation reveals that the proposed optimiser is among the state-of-the-art multiobjective meta-heuristics. The concept of using estimation of distribution algorithm for tuning meta-heuristic control parameters is efficient and effective and becomes a new direction for improving MH performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.